\(\int \frac {\cos ^3(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx\) [132]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-1)]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 145 \[ \int \frac {\cos ^3(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {11 \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\cos ^2(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}-\frac {13 \sin (c+d x)}{3 a d \sqrt {a+a \cos (c+d x)}}+\frac {7 \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{6 a^2 d} \]

[Out]

-1/2*cos(d*x+c)^2*sin(d*x+c)/d/(a+a*cos(d*x+c))^(3/2)+11/4*arctanh(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/(a+a*cos(d*x
+c))^(1/2))/a^(3/2)/d*2^(1/2)-13/3*sin(d*x+c)/a/d/(a+a*cos(d*x+c))^(1/2)+7/6*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2)
/a^2/d

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {2844, 3047, 3102, 2830, 2728, 212} \[ \int \frac {\cos ^3(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {11 \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {7 \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{6 a^2 d}-\frac {\sin (c+d x) \cos ^2(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}-\frac {13 \sin (c+d x)}{3 a d \sqrt {a \cos (c+d x)+a}} \]

[In]

Int[Cos[c + d*x]^3/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

(11*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - (Cos[c + d*x]^
2*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2)) - (13*Sin[c + d*x])/(3*a*d*Sqrt[a + a*Cos[c + d*x]]) + (7*Sqr
t[a + a*Cos[c + d*x]]*Sin[c + d*x])/(6*a^2*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2830

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d
)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*S
in[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m
, -2^(-1)]

Rule 2844

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n - 1)/(a*f*(2*m + 1))), x] + Dist[1/
(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[b*(c^2*(m + 1) + d^2*(n -
1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ
[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {\cos ^2(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}-\frac {\int \frac {\cos (c+d x) \left (2 a-\frac {7}{2} a \cos (c+d x)\right )}{\sqrt {a+a \cos (c+d x)}} \, dx}{2 a^2} \\ & = -\frac {\cos ^2(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}-\frac {\int \frac {2 a \cos (c+d x)-\frac {7}{2} a \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{2 a^2} \\ & = -\frac {\cos ^2(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac {7 \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{6 a^2 d}-\frac {\int \frac {-\frac {7 a^2}{4}+\frac {13}{2} a^2 \cos (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{3 a^3} \\ & = -\frac {\cos ^2(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}-\frac {13 \sin (c+d x)}{3 a d \sqrt {a+a \cos (c+d x)}}+\frac {7 \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{6 a^2 d}+\frac {11 \int \frac {1}{\sqrt {a+a \cos (c+d x)}} \, dx}{4 a} \\ & = -\frac {\cos ^2(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}-\frac {13 \sin (c+d x)}{3 a d \sqrt {a+a \cos (c+d x)}}+\frac {7 \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{6 a^2 d}-\frac {11 \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{2 a d} \\ & = \frac {11 \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\cos ^2(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}-\frac {13 \sin (c+d x)}{3 a d \sqrt {a+a \cos (c+d x)}}+\frac {7 \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{6 a^2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.76 \[ \int \frac {\cos ^3(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {\left (33 \sqrt {2} \text {arctanh}\left (\sqrt {\sin ^2\left (\frac {1}{2} (c+d x)\right )}\right ) (1+\cos (c+d x))+2 \sqrt {1-\cos (c+d x)} \left (-19-12 \cos (c+d x)+4 \cos ^2(c+d x)\right )\right ) \sin (c+d x)}{12 d \sqrt {1-\cos (c+d x)} (a (1+\cos (c+d x)))^{3/2}} \]

[In]

Integrate[Cos[c + d*x]^3/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

((33*Sqrt[2]*ArcTanh[Sqrt[Sin[(c + d*x)/2]^2]]*(1 + Cos[c + d*x]) + 2*Sqrt[1 - Cos[c + d*x]]*(-19 - 12*Cos[c +
 d*x] + 4*Cos[c + d*x]^2))*Sin[c + d*x])/(12*d*Sqrt[1 - Cos[c + d*x]]*(a*(1 + Cos[c + d*x]))^(3/2))

Maple [A] (verified)

Time = 1.26 (sec) , antiderivative size = 234, normalized size of antiderivative = 1.61

method result size
default \(\frac {\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (16 \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\, \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-33 \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -27 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+33 \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a \right )}{12 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{\frac {5}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(234\)

[In]

int(cos(d*x+c)^3/(a+cos(d*x+c)*a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/12*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(16*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*sin(1/2*d*x+1/2*c)^4+8*
(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*sin(1/2*d*x+1/2*c)^2-33*ln(4*(a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a)
/cos(1/2*d*x+1/2*c))*sin(1/2*d*x+1/2*c)^2*a-27*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+33*ln(4*(a^(1/2)*(a*sin(
1/2*d*x+1/2*c)^2)^(1/2)+a)/cos(1/2*d*x+1/2*c))*a)/cos(1/2*d*x+1/2*c)/a^(5/2)/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x
+1/2*c)^2)^(1/2)/d

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.20 \[ \int \frac {\cos ^3(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {33 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (4 \, \cos \left (d x + c\right )^{2} - 12 \, \cos \left (d x + c\right ) - 19\right )} \sin \left (d x + c\right )}{24 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \]

[In]

integrate(cos(d*x+c)^3/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/24*(33*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*cos(d
*x + c) + a)*sqrt(a)*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 4*sqrt(a*
cos(d*x + c) + a)*(4*cos(d*x + c)^2 - 12*cos(d*x + c) - 19)*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(
d*x + c) + a^2*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**3/(a+a*cos(d*x+c))**(3/2),x)

[Out]

Timed out

Maxima [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)^3/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

Giac [A] (verification not implemented)

none

Time = 0.69 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.70 \[ \int \frac {\cos ^3(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {\frac {3 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} a^{\frac {3}{2}} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {8 \, \sqrt {2} {\left (2 \, a^{\frac {9}{2}} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 3 \, a^{\frac {9}{2}} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{a^{6} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{12 \, d} \]

[In]

integrate(cos(d*x+c)^3/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/12*(3*sqrt(2)*sin(1/2*d*x + 1/2*c)/((sin(1/2*d*x + 1/2*c)^2 - 1)*a^(3/2)*sgn(cos(1/2*d*x + 1/2*c))) - 8*sqrt
(2)*(2*a^(9/2)*sin(1/2*d*x + 1/2*c)^3 + 3*a^(9/2)*sin(1/2*d*x + 1/2*c))/(a^6*sgn(cos(1/2*d*x + 1/2*c))))/d

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^3}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int(cos(c + d*x)^3/(a + a*cos(c + d*x))^(3/2),x)

[Out]

int(cos(c + d*x)^3/(a + a*cos(c + d*x))^(3/2), x)